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Abstract 

Let R be a commutative ring with identity. In this paper, we generalize 
the concept of Bézout modules to P-Bézout modules. A module M 
over R is said P-Bézout if every finitely generated prime submodules 
N of M is cyclic. We give an example of P-Bézout module which is 
not a Bézout module. 

1. Introduction 

The ring which considered in this paper is commutative with identity. A 
module M over R is said Bézout if every finitely generated submodules N of 
M is cyclic [1]. 
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From [2], we have the concept of P-Bézout ring. Based on that concept, 
we generalize the concept of Bézout module to P-Bézout module as follows. 

Definition 1.1. A module M over R is said P-Bézout if every finitely 
generated prime submodules N of M is cyclic. 

Of course, every Bézout module is a P-Bézout module. 

2. Result 

In this section, it will be discussed examples of P-Bézout module. Let us 
consider the following example. 

Example 2.1. Consider rational number Q  as a Z -module. Gaur et al. 

(see in [3]) proved that the prime submodules of Q  over Z  is only 0 and 0 is 

finitely generated. We will give the detail proof and, by definition, prove that 
its module is a P-Bézout module. 

Let N be a prime submodule of .ZQ  Set [ ]Q:NJ =  as an ideal of ,Z  

so that [ ] .: NNJ ⊆= QQQ  Now let A and B are ideals of Z  such that 

.JAB ⊆  It yields ( ) .NJABBA ⊆⊆= QQQ  Since N is a prime submodule, 

JA ⊆  or .NB ⊆Q  By the same argument, it yields .JB ⊆  Therefore, J 

is a prime ideal of .Z  

Let ,Jx ∈  so we have .Nx ⊆Q  Since ,Q≠N  it follows .Nx ⊂Q  

Since Nx ⊂Q  and Q  is a field, 0=x  and it follows that .0=J  

Suppose .0≠N  Since N is prime submodule, there are nonzeros ∈ba,  

QZ ⊆  such that .1 Nab ∈−  But ,Ja ∉  then Nb ∈−1  and it follows that 
.1 N∈  So we have .N⊆Z  

And N is also a pure submodule of .Q  So, there are nonzeros Z∈βα,  

such that Q∈αβ−1  but .1 N∉αβ−  We know that .1 N⊆∈α=βαβ− Z  

Since N is prime submodule and ,J∉β  .1 N∈αβ−  This is a contradiction. 

So it follows that .0=N  
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Since prime submodules of Q  over Z  is only 0 and 0 is finitely 
generated and cyclic, so Q  as a Z -module is a P-Bézout module. 

Example 2.2. Consider R is a field and .2RM =  It is clear that M is a 
two dimensional vector space and finitely generated prime submodules are 
every subspace. It follows that M is P-Bézout module since as we know that 
every subspace is a field, hence it is cyclic over R. But, M is not Bézout 
module since there exists M is finitely generated but it is not cyclic. 

Example 2.3. Let see another example of a P-Bézout module which is 

not a Bézout module. Consider 
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 Since they are cyclic submodules, M is a P-Bézout 

module. It is clear that M is finitely generated but not cyclic. So M is not a 
Bézout module. 

Example 2.4. Consider R is a ring and JRIRM ⊕=  with I and J is 

a different maximal ideal of R, is a module over R. It is easy to show that M 
is P-Bézout but not Bézout. 
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