

# **GENERALIZATION OF BÉZOUT MODULES**

## Muhamad Ali Misri<sup>1</sup>, Irawati<sup>2</sup> and Hanni Garminia Y<sup>2</sup>

<sup>1</sup>Department of Mathematics Education Jl. By Pass Perjuangan Kesambi Cirebon, Indonesia e-mail: alimisri@gmail.com alimisri@students.itb.ac.id

<sup>2</sup>Department of Mathematics Institut Teknologi Bandung Jl. Ganesa 10 Bandung 40132 Indonesia

### Abstract

Let R be a commutative ring with identity. In this paper, we generalize the concept of Bézout modules to P-Bézout modules. A module Mover R is said P-Bézout if every finitely generated prime submodules N of M is cyclic. We give an example of P-Bézout module which is not a Bézout module.

### 1. Introduction

The ring which considered in this paper is commutative with identity. A module M over R is said *Bézout* if every finitely generated submodules N of M is cyclic [1].

2010 Mathematics Subject Classification: 16D80, 13C05, 13C99.

<sup>© 2013</sup> Pushpa Publishing House

Keywords and phrases: finitely generated, *P*-Bézout modules, prime submodules. Received April 17, 2012

From [2], we have the concept of *P*-Bézout ring. Based on that concept, we generalize the concept of Bézout module to *P*-Bézout module as follows.

**Definition 1.1.** A module M over R is said P-Bézout if every finitely generated prime submodules N of M is cyclic.

Of course, every Bézout module is a P-Bézout module.

### 2. Result

In this section, it will be discussed examples of *P*-Bézout module. Let us consider the following example.

**Example 2.1.** Consider rational number  $\mathbb{Q}$  as a  $\mathbb{Z}$ -module. Gaur et al. (see in [3]) proved that the prime submodules of  $\mathbb{Q}$  over  $\mathbb{Z}$  is only 0 and 0 is finitely generated. We will give the detail proof and, by definition, prove that its module is a *P*-Bézout module.

Let *N* be a prime submodule of  $\mathbb{Q}_{\mathbb{Z}}$ . Set  $J = [N : \mathbb{Q}]$  as an ideal of  $\mathbb{Z}$ , so that  $J\mathbb{Q} = [N : \mathbb{Q}]\mathbb{Q} \subseteq N$ . Now let *A* and *B* are ideals of  $\mathbb{Z}$  such that  $AB \subseteq J$ . It yields  $A(B\mathbb{Q}) = AB\mathbb{Q} \subseteq J\mathbb{Q} \subseteq N$ . Since *N* is a prime submodule,  $A \subseteq J$  or  $B\mathbb{Q} \subseteq N$ . By the same argument, it yields  $B \subseteq J$ . Therefore, *J* is a prime ideal of  $\mathbb{Z}$ .

Let  $x \in J$ , so we have  $x \mathbb{Q} \subseteq N$ . Since  $N \neq \mathbb{Q}$ , it follows  $x \mathbb{Q} \subset N$ . Since  $x \mathbb{Q} \subset N$  and  $\mathbb{Q}$  is a field, x = 0 and it follows that J = 0.

Suppose  $N \neq 0$ . Since N is prime submodule, there are nonzeros  $a, b \in \mathbb{Z} \subseteq \mathbb{Q}$  such that  $ab^{-1} \in N$ . But  $a \notin J$ , then  $b^{-1} \in N$  and it follows that  $1 \in N$ . So we have  $\mathbb{Z} \subseteq N$ .

And *N* is also a pure submodule of  $\mathbb{Q}$ . So, there are nonzeros  $\alpha, \beta \in \mathbb{Z}$  such that  $\alpha\beta^{-1} \in \mathbb{Q}$  but  $\alpha\beta^{-1} \notin N$ . We know that  $\beta\alpha\beta^{-1} = \alpha \in \mathbb{Z} \subseteq N$ . Since *N* is prime submodule and  $\beta \notin J$ ,  $\alpha\beta^{-1} \in N$ . This is a contradiction. So it follows that N = 0. Since prime submodules of  $\mathbb{Q}$  over  $\mathbb{Z}$  is only 0 and 0 is finitely generated and cyclic, so  $\mathbb{Q}$  as a  $\mathbb{Z}$ -module is a *P*-Bézout module.

**Example 2.2.** Consider *R* is a field and  $M = R^2$ . It is clear that *M* is a two dimensional vector space and finitely generated prime submodules are every subspace. It follows that *M* is *P*-Bézout module since as we know that every subspace is a field, hence it is cyclic over *R*. But, *M* is not Bézout module since there exists *M* is finitely generated but it is not cyclic.

**Example 2.3.** Let see another example of a *P*-Bézout module which is not a Bézout module. Consider  $M = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} | a, b \in \mathbb{R} \right\}$  as an *R*-module. Submodules of *M* are just  $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ ,  $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ ,  $\begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix}$  and *M* itself. As we know that finitely generated prime submodules of *M* just are  $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ ,  $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$  and  $\begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix}$ . Since they are cyclic submodules, *M* is a *P*-Bézout module. It is clear that *M* is finitely generated but not cyclic. So *M* is not a Bézout module.

**Example 2.4.** Consider *R* is a ring and  $M = R/I \oplus R/J$  with *I* and *J* is a different maximal ideal of *R*, is a module over *R*. It is easy to show that *M* is *P*-Bézout but not Bézout.

#### References

- Majid M. Ali, Invertibility of multiplication modules, New Zealand J. Math. 35 (2006), 17-29.
- [2] Chahrazade Bakkari, On P-Bézout rings, Int. J. Algebra 3 (2009), 669-673.
- [3] Atul Gaur, Alok Kumar Maloo and Anand Parkash, Prime submodules in multiplication modules, Int. J. Algebra 1 (2007), 375-380.